Calculations based on volume and surface area of frustum

Frustum

A frustum is the portion of a solid that lies between two parallel planes cutting it. A right frustum is a parallel truncation of a right pyramid.

Frustum-image

Formulae used

h = height of frustum
s = slant height
R2 = small-radius of frustum
R1 = big-radius of frustum

\[Volume \: of frustum\: \: =\: \frac{\pi }{3}h\left ( R_{1}^{2} +R_{2}^{2}+R_{1}*R_{2}\right ) \]

\[s = \sqrt{\left (R_{2}-R_{1} \right )^{2}+h^{2}} \]

\[Lateral \: surface \: area = \pi s\left ( R_{1} +R_{2}\right ) \]

\[Top\: surface\: area(T) = \pi R_{2}^{2} \]

\[Base\: surface\: area(B) = \pi R_{1}^{2} \]

\[Total \: surface\: area =\pi \left ( R_{1}  + R_{2}\right )l + \pi R_2 ^2 +\pi R_1^2 \]

Calculate frustum's slant height, volume, lateral surface area, top surface area, base surface area and total surface area

Formula : s = √((R1 - R2)2 + h2 )

Input

Reset




Check your output in all other similar units

Slant height {{svalue}}
Volume {{vvalue}}
Lateral surface area {{lsvalue}}
Top surface area {{topvalue}}
Base surface area {{bsvalue}}
Total Surface area {{tsvalue}}

Calculate frustum's small-radius, big-radius, height, slant height and volume

Formula : h = √( s2 -(R12 - R22))

Input

Reset






Check your output in all other similar units

Small-radius {{rvalue}}
Big-radius {{Rvalue}}
Height {{hvalue}}
Slant height {{svalue}}
Volume {{vvalue}}
Posted on by