Calculations based on Surds and Indices

Law of indices : 

1 ) \[a^{m } \times a^{n} = a^{m+n} \]​

2)   \[\frac{a^{m } }{a^{n}} = a^{m-n} \]

3) \[\left ( a^{m} \right )^{n}= a^{mn} \]

4) \[\left ( ab \right )^{n}= a^{n}b^{n} \]

5) \[\left ( \frac{a}{b} \right )^{n}=\frac{ a^{n}}{b^{n}} \]

6) \[a^{0}=1 \]

Surds : Let a be a rational number and n be a positive integer such that  \[a^{\frac{1}{n}}=\sqrt[n]{a} \]  is irrational. Then, \[\sqrt[n]{a} \]   is called a surd of order n.

Laws of surds :

1) \[\sqrt[n]{a} = a^{\frac{1}{n}} \]

2) \[\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b} \]

3) \[\sqrt[n]{\frac{a}{b}} =\frac{ \sqrt[n]{a}}{\sqrt[n]{b}} \]

4) \[\left ( \sqrt[n]{a} \right )^{n} = a\]

5) \[\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a} \]

4) \[\left ( \sqrt[n]{a} \right )^{m} = \sqrt[n]{a^{m}} \]

Note : Use ^ symbol for power operations and $ symbol for root operations.

Example : 1)  To find a to the power of n i.e \[a^{n} \]  input  : a^n.

                 2)  To find a surd of order n i.e  \[\sqrt[n]{a} \]  input : a$n

                 3)  \[\sqrt[4]{\sqrt[2]{12}} \]    type this expression in input as  ((12)$2)$4

                  4)  \[\left [ 5\left ( 8^{\frac{1}{3}} +27^{\frac{1}{3}}\right ) ^{3}\right ]^{\frac{1}{4}} \]    type this expression in input field as [5*(8^(1/2)+27^(1/3))^3]^(1/4)

Evaluating surds and indices expressions

Input

Reset

Output

Result
Posted on by