Calculations based on equations of motion position-time

Equations of motion: Position-time

The displacement of a moving object is directly proportional to both velocity and time.

Derivation:

Let's start with the definition of velocity in order to derive this equation 

\[\overline{v} = \frac{\Delta s}{\Delta t} \] 

Expand Δs to s − s0 and condense Δt to t.

\[\overline{v} = \frac{s - s_{0}}{t} \]

Solve for position.

\[s = s_{0} + \overline{v}t    -->(1) \] 

When the rate of change of a quantity is constant, the quantity changes at a uniform rate so that its average value is halfway between its initial and final values.

\[\overline{v}= \frac{1}{2}\left ( v + v_{0} \right ) --> [a] \]

Substitute the first equation of motion ( \[v = v_{0} + at \]  into this equation [a] and simplify with the intent of eliminating v.

\[\overline{v} = \frac{1}{2}\left [ \left ( v_{0} + at \right ) + v_{0} \right ] \]

\[\overline{v} = \frac{1}{2}\left [ 2v_{0} + at \right ] \]

\[\overline{v} = v_{0} + \frac{1}{2}at --> (2) \]

Substitute (2) into (1) to eliminate  

\[s = s_{0} + (v_{0} + \frac{1}{2}at)t \]

And finally, solve for s as a function of t.

\[s = s_{0} + v_{0}t + \frac{1}{2}at^{2} \]

Calculating final Position of a object

Formula : s = s0 + v0t + 1/2at2

Input

Reset








Output

Final Position {{svalue}}

Calculating initial Position of a object

Formula : s0 = s - v0t - 1/2at2

Input

Reset








Output

Initial Position {{isvalue}}

Calculating acceleration

Formula : a = 2*(s - s0 - v0t) / t2

Input

Reset








Output

Acceleration {{avalue}}

Calculating acceleration

Formula : v0 = (s - s0 - (at2) / 2)

Input

Reset








Output

Initial velocity {{ivvalue}}
Posted on by