Calculations based on de Broglie wavelength

de Broglie wavelength 

Matter waves are referred to as de Broglie waves. A particle's de Broglie wavelength is defined as Planck's constant divided by the particle's momentum, p = h/p. The de Broglie wavelength is named after Louis de Broglie.

\[de\: Broglie\: wavelength = \frac{Planck's \: constant}{momentum}= \frac{Plank's\: constant}{(mass)(velocity)} \]

\[\lambda =\frac{h}{p}=\frac{h}{mv} \]

λ = the de Broglie wavelength (m)

h = Planck's constant (\[6.63\times 10^{-34}J.s \])

p = momentum of a particle (\[kg.m/s \])

m = mass of a particle (kg)

v = velocity of a particle (m/s)

Posted on by