If a straight line is drawn parallel to one side of a triangle, then it divides the other two sides proportionally.
Data: In \[ \Delta ABC\]
            DE II  BC
To prove: \[\frac{AD}{DB}=\frac{AE}{EC}\]
Construction: 1. Join DC and BE.     2. Draw EL ꓕ AB and DN ꓕ AC.
Proof:                 
	
		
			| STATEMENT | REASON | 
		
			| \[\frac{Area of \Delta ADE}{Area of \Delta BDE}=\frac{\frac{1}{2}\times AD\times EL}{\frac{1}{2}\times DB\times EL}\] | \[(\because A=\frac{1}{2}\times b\times h)\] | 
		
			| \[\therefore \frac{ \Delta ADE}{ \Delta BDE}=\frac{AD}{DB}\] |  | 
		
			| \[\frac{ \Delta ADE}{ \Delta CDE}=\frac{\frac{1}{2}\times AD\times DN}{\frac{1}{2}\times EC\times DN}\] | \[(\because A=\frac{1}{2}\times b\times h)\] | 
		
			| \[\therefore \frac{ \Delta ADE}{ \Delta CDE}=\frac{AE}{EC}\] |  | 
		
			| \[\Rightarrow \frac{ AD}{ DB}=\frac{AE}{CE}\] | [\[\because \Delta BDE= \Delta CDE \] and Axiom-1] | 
	
Axiom1:  For two triangles, if two pairs of sides have the same ratio then those two triangles are similar.